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In the solution of wave dynamics problems of gas suspensionsit is useful to employ the 
concepts of the characteristic time T and length I of interphase exchange of momentum (Tv~ 
~v ) and. heat (TT,_ IT), these being the characteristic tlmes" and lengths at which the differ- 
ences In velocities and temperatures of the gas and particles change by a specific number of 
times. Comparison of these values to the characteristic time and linear scale of the problem 
permits conclusions as to the possibility of flow description within the framework of simple 
special models (the gas suspension thermodynamic equilibrium model, single-temperature gas 
suspension model, etc.). If the flow must be studied within the framework of the generalized 
two-temperature, two-velocity model, then the characteristic interphase interaction times 
and lengths permit introduction of convenient dimensionless variables. It will be shown below 
that the characteristic times for dynamic T and thermal rT phase interaction are determined 
by the characteristic Reynolds numbers for ~low over particles. They may differ greatly from 
each other, and from the conventional Stokes times [i, 2] corresponding to small Reynolds num- 
bers. 

Let an isolated spherical particle of diameter d and density Ps having an initial veloc- 
ity Vso and temperature Tso be located within a gas flow behind the front of a shock wave mov- 
ing with velocity D, the gas flow velocity relative to a fixed coordinate system being vgf, 
with temperature Tgf and density pgf (the situation shown schematically in Fig. I). In such 
a constant flow the laws specifying the changes in particle velocity and temperature are de- 
scribed by differential equations 

m d ~ l d t  = / ,  rae~dT~tdt = q (m : (t/6)~d3p~), 

/ = OA25~d2p~yCa[~j  - -  vs](v~f - -  ~ ) ,  q = nd~ gNu(T~ f  --+ Ts),  (1) 

where C d is the resistance coefficient, Nu is the heat exchange parameter, p, I, c, the den- 
sity, thermalconductivity, and specific heat, the subscripts g and f denote gas and particle 
parameters. 

The resistance coefficient C d and heat exchange parameter Nu, whcih determine the inten- 
sity of thermal and mechanical interaction of the particle with the gas behind the shock wave 
front, depend on the characteristic Reynolds and Mach numbers of the relative motion [3]. How- 
ever, particle flowover regimes with large Mach numbers are realized only in very intense 
shock waves, while in other cases the Mach effect is small and may be neglected. We take 

Cd = 24/Re + 4 /Re  ~ + 0,44, Nu : 2 + 0.6Re~176 Re = [ ~  - -  v~[dpgl~g, Pr ~~gcpg/~z~ ( 2 )  

where Cpg and ~~ are the specific heat at constant pressure and the dynamic viscosity; Pr is 
the Prandtl number of the gas. 

At low Re (Re < -i) a Stokes flowover regime is realized, in which in place of Eq. (2) 
we have C d m 24/Re, Nu ~ 2. In this case in accordance with Eq. (i) the change in velocity 
v s and temperature T of the particle with time are defined by exponential functions 

S 

(3) 
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where T., T~ are the characteristic times over which the difference between gas and �9 

v 

velocities and temperatures change by a factor of e m 2.7 times in the Stokes regime of rel- 
ative motion. These parameters have meaning over the entire zone of parameter equalization 

S S and therefore can be called relaxation times (T is the Stokes velocity relaxation time, T T 
is the Stokes temperature relaxation time), weVnote that 

,IS Cs 
- L = k ,  k = i . 5 ~ P r , v  L (4) S 
%v : r 

The constant k is of the order of magnitude of unity, since c s ~ Cpg, while the gas Prandtl 
number Pr ~ i. 

If the Reynolds numbers of the relative flow over the particles are sufficiently great 
(Re > i0 2) we have Newtonian flow over the particles, wherein with consideration that Pr ~ 1 

in accordance with Eq. (2) we may take 

C~ _--_ 0.44, Nu ~ 0.6RCP". (5) 

Integration of equation of motion (i) with resistance law (5) gives a time dependence for 

particle Velocity 

A__t = ~ - . ~ g l  = 1 + ( e - -  t)  ' ~ ~ ' Pgl I ~gt-  % I' Av 0 vs 0 - -  Vg t 

N �9 where T v is the characteristic time over which the difference between gas and particle veloc- 
ities in the initial section of particle motion behind the shock wave changes by a factor of 

e times with Newtonian overflow. 

N is not a true relaxation time In contrast to Eq. (3), Eq. (6) is not exponential, and T v 
having meanin~ over the entire zone of velocity equalization. We note that in contrast to the 
Stokes time T v the Newtonian time T N is proportional not to the square, but to the first power 
of the particle diameter d. Moreover, it depends on the characteristic phase density ratio 

ps/Pgf and the characteristic velocity difference IVgf- Vso I. Then 

N 
"% 94 I vg~, -- Vso [ d, pg! :j> t0~, (7) 

S - -  Be,' 6g ~v 

where Re, is the characteristic Reynolds number of the relative motion, defined by the gas and 
particle parameters behind the shock wave front. Thus the characteristic Newtonian time T~ is 

always less than the Stokes time T S. 
v 

In the case of Newtonian flow over the particles we obtain the particle temperature de- 
pendence on time by integration of the heat increment equation (i) with heat exchange law (5) 
with consideration of changes in particle velocity with time (number Re) in accordance with 

Eq. (6). We have 

AT r~ -- r~1 (8) 
AT0=Ts o _ T M ~ e X  0 . 3 5 ~ ,  1 - -  I + 1.72 �9 

Eauation (8) permits derivation of an expression for the characteristic temperature equaliza- 
tion time for Newtonian flow over the moving particle (the time over which the difference be- 

tween gas and particle temperatures changes by a factor of e = 2.7 times): 

( ) �9 ~ ~ a .4 . to- ,kFN-~,  +5 .2 . to - 'k~a~ ,  k = t . 5  ! p ~  1, R ~ , > ~ 0  ~ �9 (9) 
~'~v ' C p g 

I t  i s  e v i d e n t  t h a t  i n  c o n t r a s t  t o  t h e  S t o k e s  c a s e ,  whe re  in  a c c o r d a n c e  w i t h  Eq. (4) T~/ 
S ~ 1- t h e  v a l u e s  o f  t h e  r a t i o s  T~ and T~ depend  on t h e  c h a r a c t e r i s t i c  R e y n o l d s  number Re ,  
f g r  N e w t o n i a n  f l o w  o v e r  t h e  p a r t i c l e s ,  and a t  Re~ o f  t h e  o r d e r  o f  10 3 and above  may s i g n i f i -  
c a n t l y  e x c e e d  u n i t y .  We n o t e  t h a t  T~, j u s t  l i k e  ~ v '  c h a r a c t e r i z e s  o n l y  t h e  N e w t o n l a n  zone 
o f  t e m p e r a t u r e  e q u a l i z a t i o n  and ( i n  c o n t r a s t  t o  TT) i s  n o t  t h e  t r u e  t e m p e r a t u r e  r e l a x a t i o n  
t i m e .  I n  c o n t r a s t  t o  t h e  S t o k e s  t i m e  T~ depends  on t h e  c h a r a c t e r i s t i c  R e y n o l d s  number  o f  t h e  
r e l a t i v e  m o t i o n  R e , .  We t h e n  h a v e  
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,,( ,5 ) ~ ~ o,osk + V - ~  k = ,, --~ P~ ~ ~, R , ,  ~ {o" , 

consequently, the characteristic Newtonian time T~ is significantly smaller than the corre- 
, �9 TN T S sponding Stokes time T$. However the value of the ratlo T / T cannot be less tha~ 0.05 no 

matter how high Re,, i.e., the characteristic Newtonian temperature change time T T cannot be 
arbitrarily small (in contrast to the Newtonian velocity change time, which tends to zero upon 
increase in Re, [see Eq. (7)]. 

We note that if an expression for T~ is obtained without consideration of the effect of 
particles being set in motion under the action of the gas flow, setting the heat exchange pa- 
rameter Nu in Eq. (5) equal to 0.6Re~ I/2 = const, then at values Re, >> 103 large errors may 
be produced in determining T~. In fact, with such an approach to determining T~ (we will de- 
note the corresponding value of ~ by the subscript * below) we have 

�9 ~ , / ~ T  

N N " In contras~ to T~, the quantity T_, § 0 as Re, § ~. Therefore, for example, at Re, = 105 
we have r m 6TT, , an~ with increase i~ Re, the difference between T~ and T~, also increases. 

With consideration of Eqs. (4), (7), and (9), which relate the quantities T~, ~N to each 
other, the law of particle temperature change with time, Eq. (8), can be rewritten i~ the form 

At--% = r~o - r~f o,o3k V ~  t + [(1 +o,o3k,Yh-~, y -  
�9 . 

(io) 

It can easily be shown that for Re, ~ 105 (when 0o03k R/R~e, >> !) for times t/T~ ~ i, the parame- 
ter Re, has practically no effect on the form of Eq. (I0), and 

247 



AnA ro exp {-- 
~ne form o f  t he  d ~ e n s i o n l e s s  t ime dependences o f  r e l a t i v e  p a r t i c l e  v e l o c i t y  and tempera-  

t u r e  behind the wave front for Stokes and Newtonian overflow regimes is illustrated in Fig. 2, 
where the solid line is the Stokes exponential dependence, Eq. (3), the dashed line is Newton- 
ian velocity dependence (6), and the dotted line is particle temperature vs time, Eq. (i0), 
at Re, = 105 . Each curve is constructed Using its own dimensionless time value. It is evident 
that Eqs. (6), (i0) do not differ greatly from exponential, althouzh they are steeper for t/ 
T < i and flatter for t/T > I. At t/T > I, Eqs. (6), (!0) (dashed and dotted lines) practi- 
cally coincide (as was noted above, at Re, > 105 the form of Eq. (i0) does not depend on this 
parameter). Figure 3 illustrates the dependence of Characteristic Newtonian particle velocity 
and temperature change times on characteristic Reynolds number of the relative flowover Re, 
and clearly shows the difference between these times over a wide Re, range. 

Figure 4 shows the dependence of characteristic Newtonian particle velocity change time 
(relative to the Stokes velocity relaxation time, solid lines) and the characteristic tempera- 
ture change time (relative to the Stokes temperature relaxation time, dashed lines) on Mach 
number for the case of a shock wave in air. The various curves correspond to different particle 
diameters (numbers along the curves are diameters in i). Each curve illustrates the correspond- 
ing functions in the region of Mach numbers sufficiently large for a given diameter, at which 
there is no doubt that a Newtonian regime is realized behind the front (Re=~ > l0 s ) . With in- 
crease in wave intensity the ratio between Newtoni~n and Stokes times decreases, with the char- 
acteristic velocity change time tending to zero, and the temperature change time to approxi- 
mately 0.05. For waves of fixed intensity the ratio of Newtonian to Stokes times increases 
with decrease in particle diameter, while 

N ~q , - - 1  "~v / 'cv  N A d  , N s Tr/~T ~ 0.05 + B d  -1/2 (A, B = r 

The r e s u l t s  o f  t h e  a n a l y s i s  p e r f o r m e d  may p r o v e  u s e f u l  i n  d e t e r m i n i n g  c h a r a c t e r i s t i c  mo- 
mentum and h e a t  exchange  t i m e s  b e t w e e n  p h a s e s  i n  p r o b l e m s  o f  dynamics  o f  gas  s u s p e n s i o n s .  

i. 
2. 
3. 
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